Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
iScience ; 27(3): 109296, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38469559

RESUMO

Synaptic abnormalities are a hallmark of several neurological diseases, and clarification of the underlying mechanisms represents a crucial step toward the development of therapeutic strategies. Rett syndrome (RTT) is a rare neurodevelopmental disorder, mainly affecting females, caused by mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene, leading to a deep derangement of synaptic connectivity. Although initial studies supported the exclusive involvement of neurons, recent data have highlighted the pivotal contribution of astrocytes in RTT pathogenesis through non-cell autonomous mechanisms. Since astrocytes regulate synapse formation and functionality by releasing multiple molecules, we investigated the influence of soluble factors secreted by Mecp2 knock-out (KO) astrocytes on synapses. We found that Mecp2 deficiency in astrocytes negatively affects their ability to support synaptogenesis by releasing synaptotoxic molecules. Notably, neuronal inputs from a dysfunctional astrocyte-neuron crosstalk lead KO astrocytes to aberrantly express IL-6, and blocking IL-6 activity prevents synaptic alterations.

2.
Biomedicines ; 11(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38137449

RESUMO

Cellular senescence is characterized by proliferation and migration exhaustion, senescence-associated secretory phenotype (SASP), and oxidative stress. Senescent vascular smooth muscle cells (VSMCs) contribute to cardiovascular diseases and atherosclerotic plaque instability. Since there are no unanimously agreed senescence markers in human VSMCs, to improve our knowledge, we looked for new possible senescence markers. To this end, we first established and characterized a model of replicative senescence (RS) in human aortic VSMCs. Old cells displayed several established senescence-associated markers. They stained positive for the senescence-associated ß-galactosidase, showed a deranged proliferation rate, a dramatically reduced expression of PCNA, an altered migratory activity, increased levels of TP53 and cell-cycle inhibitors p21/p16, and accumulated in the G1 phase. Old cells showed an altered cellular and nuclear morphology, downregulation of the expression of LMNB1 and HMGB1, and increased expression of SASP molecules (IL1ß, IL6, IL8, and MMP3). In these senescent VSMCs, among a set of 12 manually selected long non-coding RNAs (lncRNAs), we detected significant upregulation of PURPL and NEAT1. We observed also, for the first time, increased levels of RRAD mRNA. The detection of modulated levels of RRAD, PURPL, and NEAT1 during VSMC senescence could be helpful for future studies on potential anti-aging factors.

3.
PLoS One ; 18(5): e0286104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252915

RESUMO

Long non-coding RNAs (lncRNAs) have emerged as key regulators of cellular senescence by transcriptionally and post-transcriptionally modulating the expression of many important genes involved in senescence-associated pathways and processes. Among the different lncRNAs associated to senescence, Senescence Associated Long Non-coding RNA (SALNR) was found to be down-regulated in different cellular models of senescence. Since its release in 2015, SALNR has not been annotated in any database or public repository, and no other experimental data have been published. The SALNR sequence is located on the long arm of chromosome 10, at band 10q23.33, and it overlaps the 3' end of the HELLS gene. This investigation helped to unravel the mystery of the existence of SALNR by analyzing publicly available short- and long-read RNA sequencing data sets and RT-PCR analysis in human tissues and cell lines. Additionally, the expression of HELLS has been studied in cellular models of replicative senescence, both in silico and in vitro. Our findings, while not supporting the actual existence of SALNR as an independent transcript in the analyzed experimental models, demonstrate the expression of a predicted HELLS isoform entirely covering the SALNR genomic region. Furthermore, we observed a strong down-regulation of HELLS in senescent cells versus proliferating cells, supporting its role in the senescence and aging process.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Senescência Celular/genética , Regulação para Baixo , Linhagem Celular , Fibroblastos/fisiologia , DNA Helicases/genética
4.
Eur J Hum Genet ; 31(8): 931-938, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217626

RESUMO

Spinal neurofibromatosis (SNF) is a form of neurofibromatosis type 1 (NF1) characterized by bilateral neurofibromas involving all spinal roots. The pathogenic mechanisms determining the SNF form are currently unknown. To verify the presence of genetic variants possibly related to SNF or classic NF1, we studied 106 sporadic NF1 and 75 SNF patients using an NGS panel of 286 genes encoding RAS pathway effectors and neurofibromin interactors and evaluated the expression of syndecans (SDC1, SDC2, SDC3, SDC4), the NF1 3' tertile interactors, by quantitative real-time PCR. We previously identified 75 and 106 NF1 variants in SNF and NF1 cohorts, respectively. The analysis of the distribution of pathogenic NF1 variants in the three NF1 tertiles showed a significantly higher prevalence of NF1 3' tertile mutations in SNF than in the NF1 cohort. We hypothesized a potential pathogenic significance of the 3' tertile NF1 variants in SNF. The analysis of syndecan expression on PBMCs RNAs from 16 SNF, 16 classic NF1 patients and 16 healthy controls showed that the expression levels of SDC2 and SDC3 were higher in SNF and NF1 patients than in controls; moreover, SDC2, SDC3 and SDC4 were significantly over expressed in patients mutated in the 3' tertile compared to controls. Two different mutational NF1 spectra seem to characterize SNF and classic NF1, suggesting a pathogenic role of NF1 3' tertile and its interactors, syndecans, in SNF. Our study, providing new insights on a possible role of neurofibromin C-terminal in SNF, could address effective personalized patient management and treatments.


Assuntos
Neurofibromatoses , Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neurofibromina 1/genética , Mutação , Sindecanas/genética , Genes da Neurofibromatose 1
5.
Pharmacol Res ; 183: 106378, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35918044

RESUMO

Aberrant activation of the Hh pathway promotes cell proliferation and multi-drug resistance (MDR) in several cancers, including Acute Myeloid Leukemia (AML). Notably, only one Hh inhibitor, glasdegib, has been approved for AML treatment, and most patients eventually relapse, highlighting the urgent need to discover new therapeutic targets. Hh signal is transduced through the membrane of the primary cilium, a structure expressed by non-proliferating mammalian cells, whose stabilization depends on the activity of HDAC6. Here we describe a positive correlation between Hh, HDAC6, and MDR genes in a cohort of adult AML patients, human leukemic cell lines, and a zebrafish model of Hh overexpression. The hyper-activation of Hh or HDAC6 in zebrafish drove the increased proliferation of hematopoietic stem and progenitor cells (HSPCs). Interestingly, this phenotype was rescued by inhibition of HDAC6 but not of Hh. Also, in human leukemic cell lines, a reduction in vitality was obtained through HDAC6, but not Hh inhibition. Our data showed the presence of a cross-talk between Hh and HDAC6 mediated by stabilization of the primary cilium, which we detect for the first time in zebrafish HSPCs. Inhibition of HDAC6 activity alone or in combination therapy with the chemotherapeutic agent cytarabine, efficiently rescued the hematopoietic phenotype. Our results open the possibility to introduce HDAC6 as therapeutic target to reduce proliferation of leukemic blasts in AML patients.


Assuntos
Proteínas Hedgehog , Inibidores de Histona Desacetilases , Leucemia Mieloide Aguda , Adulto , Animais , Proliferação de Células , Proteínas Hedgehog/metabolismo , Células-Tronco Hematopoéticas , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo
6.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352756

RESUMO

Transcriptional changes normally occur during development but also underlie differences between healthy and pathological conditions. Transcription factors or chromatin modifiers are involved in orchestrating gene activity, such as the cohesin genes and their regulator NIPBL. In our previous studies, using a zebrafish model for nipblb knockdown, we described the effect of nipblb loss-of-function in specific contexts, such as central nervous system development and hematopoiesis. However, the genome-wide transcriptional impact of nipblb loss-of-function in zebrafish embryos at diverse developmental stages remains under investigation. By RNA-seq analyses in zebrafish embryos at 24 h post-fertilization, we examined genome-wide effects of nipblb knockdown on transcriptional programs. Differential gene expression analysis revealed that nipblb loss-of-function has an impact on gene expression at 24 h post fertilization, mainly resulting in gene inactivation. A similar transcriptional effect has also been reported in other organisms, supporting the use of zebrafish as a model to understand the role of Nipbl in gene regulation during early vertebrate development. Moreover, we unraveled a connection between nipblb-dependent differential expression and gene expression patterns of hematological cell populations and AML subtypes, enforcing our previous evidence on the involvement of NIPBL-related transcriptional dysregulation in hematological malignancies.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Embrião não Mamífero/citologia , Perfilação da Expressão Gênica , Genoma , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
7.
Front Cell Dev Biol ; 8: 844, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015043

RESUMO

Histone deacetylase 8 (HDAC8), a class I HDAC that modifies non-histone proteins such as p53, is highly expressed in different hematological neoplasms including a subtype of acute myeloid leukemia (AML) bearing inversion of chromosome 16 [inv(16)]. To investigate HDAC8 contribution to hematopoietic stem cell maintenance and myeloid leukemic transformation, we generated a zebrafish model with Hdac8 overexpression and observed an increase in hematopoietic stem/progenitor cells, a phenotype that could be reverted using a specific HDAC8 inhibitor, PCI-34051 (PCI). In addition, we demonstrated that AML cell lines respond differently to PCI treatment: HDAC8 inhibition elicits cytotoxic effect with cell cycle arrest followed by apoptosis in THP-1 cells, and cytostatic effect in HL60 cells that lack p53. A combination of cytarabine, a standard anti-AML chemotherapeutic, with PCI resulted in a synergistic effect in all the cell lines tested. We, then, searched for a mechanism behind cell cycle arrest caused by HDAC8 inhibition in the absence of functional p53 and demonstrated an involvement of the canonical WNT signaling in zebrafish and in cell lines. Together, we provide the evidence for the role of HDAC8 in hematopoietic stem cell differentiation in zebrafish and AML cell lines, suggesting HDAC8 inhibition as a therapeutic target in hematological malignancies. Accordingly, we demonstrated the utility of a highly specific HDAC8 inhibition as a therapeutic strategy in combination with standard chemotherapy.

8.
Eur J Hum Genet ; 28(10): 1432-1445, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32514133

RESUMO

Noonan syndrome (NS) is an autosomal-dominant disorder with variable expressivity and locus heterogeneity. Despite several RAS pathway genes were implicated in NS, 20-30% of patients remain without molecular diagnosis, suggesting the involvement of further genes or multiple mechanisms. Eight patients out of 60, negative for conventional NS mutation analysis, with heterogeneous NS phenotype were investigated by means of target resequencing of 26 RAS/MAPK pathway genes. A trio was further characterized by means of whole-exome sequencing. Protein modeling and in silico prediction of protein stability allowed to identify possible pathogenic RAS pathway variants in four NS patients. A new c.355T>C variant in LZTR1 was found in patient 43. Two patients co-inherited variants in LRP1 and LZTR1 (patient 53), or LRP1 and SOS1 genes (patient 67). The forth patient (56) carried a compound heterozygote of RASAL3 gene variants and also an A2ML1 variant. While these subclinical variants are singularly present in healthy parents, they co-segregate in patients, suggesting their addictive effect and supporting a digenic inheritance, as alternative model to a more common monogenic transmission. The ERK1/2 and SAPK/JNK activation state, assessed on immortalized lymphocytes from patients 53 and 67 showed highest phosphorylation levels compared to their asymptomatic parents. These findings together with the lack of their co-occurrence in the 1000Genomes database strengthen the hypothesis of digenic inheritance in a subset of NS patients. This study suggests caution in the exclusion of subclinical variants that might play a pathogenic role providing new insights for alternative hereditary mechanisms.


Assuntos
Exoma , Herança Multifatorial , Mutação , Síndrome de Noonan/genética , Fenótipo , Adulto , Idoso , Feminino , Proteínas Ativadoras de GTPase/genética , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Sistema de Sinalização das MAP Quinases/genética , Masculino , Pessoa de Meia-Idade , Síndrome de Noonan/patologia , Proteína SOS1/genética , Fatores de Transcrição/genética , alfa-Macroglobulinas/genética
9.
Front Genet ; 10: 846, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608105

RESUMO

The incidence of cancer and Alzheimer's disease (AD) increases exponentially with age. A growing body of epidemiological evidence and molecular investigations inspired the hypothesis of an inverse relationship between these two pathologies. It has been proposed that the two diseases might utilize the same proteins and pathways that are, however, modulated differently and sometimes in opposite directions. Investigation of the common processes underlying these diseases may enhance the understanding of their pathogenesis and may also guide novel therapeutic strategies. Starting from a text-mining approach, our in silico study integrated the dispersed biological evidence by combining data mining, gene set enrichment, and protein-protein interaction (PPI) analyses while searching for common biological hallmarks linked to AD and cancer. We retrieved 138 genes (ALZCAN gene set), computed a significant number of enriched gene ontology clusters, and identified four PPI modules. The investigation confirmed the relevance of autophagy, ubiquitin proteasome system, and cell death as common biological hallmarks shared by cancer and AD. Then, from a closer investigation of the PPI modules and of the miRNAs enrichment data, several genes (SQSTM1, UCHL1, STUB1, BECN1, CDKN2A, TP53, EGFR, GSK3B, and HSPA9) and miRNAs (miR-146a-5p, MiR-34a-5p, miR-21-5p, miR-9-5p, and miR-16-5p) emerged as promising candidates. The integrative approach uncovered novel miRNA-gene networks (e.g., miR-146 and miR-34 regulating p62 and Beclin1 in autophagy) that might give new insights into the complex regulatory mechanisms of gene expression in AD and cancer.

10.
Int J Mol Sci ; 20(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450727

RESUMO

The abnormal deposition of proteins in brain tissue is a common feature of neurodegenerative diseases (NDs) often accompanied by the spread of mutated proteins, causing neuronal toxicity. Exosomes play a fundamental role on their releasing in extracellular space after endosomal pathway activation, allowing to remove protein aggregates by lysosomal degradation or their inclusion into multivesicular bodies (MVBs), besides promoting cellular cross-talk. The emerging evidence of pathogenic mutations associated to ND susceptibility, leading to impairment of exosome production and secretion, opens a new perspective on the mechanisms involved in neurodegeneration. Recent findings suggest to investigate the genetic mechanisms regulating the different exosome functions in central nervous system (CNS), to understand their role in the pathogenesis of NDs, addressing the identification of diagnostic and pharmacological targets. This review aims to summarize the mechanisms underlying exosome biogenesis, their molecular composition and functions in CNS, with a specific focus on the recent findings invoking a defective exosome biogenesis as a common biological feature of the major NDs, caused by genetic alterations. Further definition of the consequences of specific genetic mutations on exosome biogenesis and release will improve diagnostic and pharmacological studies in NDs.


Assuntos
Suscetibilidade a Doenças , Exossomos/metabolismo , Variação Genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Animais , Biomarcadores , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiopatologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Doenças Neurodegenerativas/patologia
11.
Oncoimmunology ; 8(3): 1554967, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723587

RESUMO

Dendritic cells (DCs) initiate adaptive immune responses after their migration to secondary lymphoid organs. The LXR ligands/oxysterols and the RXR ligand 9-cis Retinoic Acid (9-cis RA) were shown to dampen DC migration to lymphoid organs through the inhibition of CCR7 expression. We performed transcriptomics of DCs undergoing maturation in the presence of the LXR ligand 22R-Hydroxycholesterol (22R-HC). The analysis highlighted more than 1500 genes modulated by 22R-HC treatment, including the triggering receptor expressed on myeloid cells (TREM)-1, which was found markedly up-regulated. We tested the effect of other nuclear receptor ligands (NRL) and we reported the induction of TREM-1 following RXR, RAR and VDR activation. From a functional point of view, triggering of TREM-1 induced by retinoids increased TNFα and IL-1ß release, suggesting an active role of NRL-activated TREM-1+ DCs in inflammation-driven diseases, including cancer. Consistently with this hypothesis we detected DCs expressing TREM-1 in pleural effusions and ascites of cancer patients, an observation validated by the induction of TREM-1, LXR and RAR target genes when monocyte-DCs were activated in the presence of tumor-conditioned fluids. Finally, we observed a better control of LLC tumor growth in Trem-1-/- bone marrow chimera mice as compared to wild type chimera mice. Future studies will be necessary to shed light on the mechanism of TREM-1 induction by distinct NRL, and to characterize the role of TREM-1+ DCs in tumor growth.

12.
BMC Genomics ; 19(1): 302, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703138

RESUMO

BACKGROUND: Emissions from diesel vehicles and biomass burning are the principal sources of primary ultrafine particles (UFP). The exposure to UFP has been associated to cardiovascular and pulmonary diseases, including lung cancer. Although many aspects of the toxicology of ambient particulate matter (PM) have been unraveled, the molecular mechanisms activated in human cells by the exposure to UFP are still poorly understood. Here, we present an RNA-seq time-course experiment (five time point after single dose exposure) used to investigate the differential and temporal changes induced in the gene expression of human bronchial epithelial cells (BEAS-2B) by the exposure to UFP generated from diesel and biomass combustion. A combination of different bioinformatics tools (EdgeR, next-maSigPro and reactome FI app-Cytoscape and prioritization strategies) facilitated the analyses the temporal transcriptional pattern, functional gene set enrichment and gene networks related to cellular response to UFP particles. RESULTS: The bioinformatics analysis of transcriptional data reveals that the two different UFP induce, since the earliest time points, different transcriptional dynamics resulting in the activation of specific genes. The functional enrichment of differentially expressed genes indicates that the exposure to diesel UFP induces the activation of genes involved in TNFα signaling via NF-kB and inflammatory response, and hypoxia. Conversely, the exposure to ultrafine particles from biomass determines less distinct modifications of the gene expression profiles. Diesel UFP exposure induces the secretion of biomarkers associated to inflammation (CCXL2, EPGN, GREM1, IL1A, IL1B, IL6, IL24, EREG, VEGF) and transcription factors (as NFE2L2, MAFF, HES1, FOSL1, TGIF1) relevant for cardiovascular and lung disease. By means of network reconstruction, four genes (STAT3, HIF1a, NFKB1, KRAS) have emerged as major regulators of transcriptional response of bronchial epithelial cells exposed to diesel exhaust. CONCLUSIONS: Overall, this work highlights modifications of the transcriptional landscape in human bronchial cells exposed to UFP and sheds new lights on possible mechanisms by means of which UFP acts as a carcinogen and harmful factor for human health.


Assuntos
Biomassa , Brônquios/metabolismo , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Material Particulado/efeitos adversos , Emissões de Veículos/envenenamento , Brônquios/citologia , Brônquios/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Transcriptoma
13.
Part Fibre Toxicol ; 14(1): 32, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28899404

RESUMO

BACKGROUND: Exposure to particulate matter (PM) is associated with increased incidence of cardiovascular disease and increased coagulation, but the molecular mechanisms underlying these associations remain unknown. Obesity may increase susceptibility to the adverse effects of PM exposure, exacerbating the effects on cardiovascular diseases. Extracellular vesicles (EVs), which travel in body fluids and transfer microRNAs (miRNAs) between tissues, might play an important role in PM-induced cardiovascular risk. We sought to determine whether the levels of PM with an aerodynamic diameter ≤ 10 µm (PM10) are associated with changes in fibrinogen levels, EV release, and the miRNA content of EVs (EV-miRNAs), investigating 1630 overweight/obese subjects from the SPHERE Study. RESULTS: Short-term exposure to PM10 (Day before blood drawing) was associated with an increased release of EVs quantified by nanoparticle tracking analysis, especially EVs derived from monocyte/macrophage components (CD14+) and platelets (CD61+) which were characterized by flow cytometry. We first profiled miRNAs of 883 subjects by the QuantStudio™ 12 K Flex Real Time PCR System and the top 40 EV-miRNAs were validated through custom miRNA plates. Nine EV-miRNAs (let-7c-5p; miR-106a-5p; miR-143-3p; miR-185-5p; miR-218-5p; miR-331-3p; miR-642-5p; miR-652-3p; miR-99b-5p) were downregulated in response to PM10 exposure and exhibited putative roles in cardiovascular disease, as highlighted by integrated network analysis. PM10 exposure was significantly associated with elevated fibrinogen levels, and five of the nine downregulated EV-miRNAs were mediators between PM10 exposure and fibrinogen levels. CONCLUSIONS: Research on EVs opens a new path to the investigation of the adverse health effects of air pollution exposure. EVs have the potential to act both as markers of PM susceptibility and as potential molecular mechanism in the chain of events connecting PM exposure to increased coagulation, which is frequently linked to exposure and CVD development.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/sangue , Vesículas Extracelulares/efeitos dos fármacos , MicroRNAs/sangue , Obesidade/sangue , Material Particulado/toxicidade , Índice de Massa Corporal , Doenças Cardiovasculares/induzido quimicamente , Estudos Transversais , Vesículas Extracelulares/metabolismo , Feminino , Citometria de Fluxo , Humanos , Exposição por Inalação/análise , Modelos Lineares , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Análise Multivariada , Obesidade/complicações , Tamanho da Partícula
14.
Environ Pollut ; 231(Pt 2): 1314-1321, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28916279

RESUMO

Diesel exhaust particles (DEP) and their ultrafine fraction (UFP) are known to induce cardiovascular effects in exposed subjects. The mechanisms leading to these outcomes are still under investigation, but the activation of respiratory endothelium is likely to be involved. Particles translocation through the air-blood barrier and the release of mediators from the exposed epithelium have been suggested to participate in the process. Here we used a conditioned media in vitro model to investigate the role of epithelial-released mediators in the endothelial cells activation. Diesel UFP were sampled from a Euro 4 vehicle run over a chassis dyno and lung epithelial BEAS-2B cells were exposed for 20 h (dose 5 µg/cm2). The exposure media were collected and used for endothelial HPMEC-ST1.6R cells treatment for 24 h. The processes related to oxidative stress and inflammation were investigated in the epithelial cells, accordingly to the present knowledge on DEP toxicity. The release of IL-6 and VEGF was significantly augmented in diesel exposed cells. In endothelial cells, VCAM-1 and ICAM-1 adhesion molecules levels were increased after exposure to the conditioned media. By interfering with IL-6 binding to its endothelial receptor, we demonstrate the role of this interleukin in inducing the endothelial response.


Assuntos
Poluentes Atmosféricos/toxicidade , Interleucina-6/metabolismo , Emissões de Veículos/toxicidade , Células Endoteliais/fisiologia , Células Epiteliais/fisiologia , Humanos , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Testes de Toxicidade
15.
Oncotarget ; 8(69): 113502-113515, 2017 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371925

RESUMO

Clear cell renal cell carcinoma (ccRCC) has a poor prognosis despite novel biological targeted therapies. Tumor aggressiveness and poor survival may correlate with tumor grade at diagnosis and with complex metabolic alterations, also involving glucose and lipid metabolism. However, currently no grade-specific metabolic therapy addresses these alterations. Here we used primary cell cultures from ccRCC of low- and high-grade to investigate the effect on energy state and reduced pyridine nucleotide level, and on viability and proliferation, of specific inhibition of glycolysis with 2-deoxy-D-glucose (2DG), or fatty acid oxidation with Etomoxir. Our primary cultures retained the tissue grade-dependent modulation of lipid and glycogen storage and aerobic glycolysis (Warburg effect). 2DG affected lactate production, energy state and reduced pyridine nucleotide level in high-grade ccRCC cultures, but the energy state only in low-grade. Rather, Etomoxir affected energy state in high-grade and reduced pyridine nucleotide level in low-grade cultures. Energy state and reduced pyridine nucleotide level were evaluated by ATP and reduced 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) dye quantification, respectively. 2DG treatment impaired cell proliferation and viability of low-grade ccRCC and normal cortex cultures, whereas Etomoxir showed a cytostatic and cytotoxic effect only in high-grade ccRCC cultures. Our data indicate that in ccRCC the Warburg effect is a grade-dependent feature, and fatty acid oxidation can be activated for different grade-dependent metabolic needs. A possible grade-dependent metabolic therapeutic approach in ccRCC is also highlighted.

16.
Am J Pathol ; 186(9): 2473-85, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27449199

RESUMO

Human clear cell renal cell carcinoma (ccRCC) is therapy resistant; therefore, it is worthwhile studying in depth the molecular aspects of its progression. In ccRCC the biallelic inactivation of the VHL gene leads to stabilization of hypoxia-inducible factors (HIFs). Among the targets of HIF-1α transcriptional activity is the LOX gene, which codes for the inactive proenzyme (Pro-Lox) from which, after extracellular secretion and proteolysis, derives the active enzyme (Lox) and the propeptide (Lox-PP). By increasing stiffness of extracellular matrix by collagen crosslinking, Lox promotes tumor progression and metastasis. Lox and Lox-PP can reenter the cells where Lox promotes cell proliferation and invasion, whereas Lox-PP acts as tumor suppressor because of its Ras recision and apoptotic activity. Few data are available concerning LOX in ccRCC. Using an in vitro model of ccRCC primary cell cultures, we performed, for the first time in ccRCC, a detailed study of endogenous LOX and also investigated their transcriptomic profile. We found that endogenous LOX is overexpressed in ccRCC, is involved in a positive-regulative loop with HIF-1α, and has a major action on ccRCC progression through cellular adhesion, migration, and collagen matrix stiffness increment; however, the oncosuppressive action of Lox-PP was not found to prevail. These findings may suggest translational approaches for new therapeutic strategies in ccRCC.


Assuntos
Carcinoma de Células Renais/patologia , Colágeno/metabolismo , Neoplasias Renais/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Carcinoma de Células Renais/enzimologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Progressão da Doença , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Neoplasias Renais/enzimologia , Masculino , Microscopia de Força Atômica , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Cultura Primária de Células , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Células Tumorais Cultivadas
17.
Environ Res ; 146: 274-81, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26775008

RESUMO

AIMS: Exposure to particulate air pollution is associated with increased blood pressure (BP), a well-established risk factor for cardiovascular disease. To elucidate the mechanisms underlying this relationship, we investigated whether the effects of particulate matter of less than 10µm in aerodynamic diameter (PM10) on BP are mediated by microRNAs. METHODS AND RESULTS: We recruited 90 obese individuals and we assessed their PM10 exposure 24 and 48h before the recruitment day. We performed multivariate linear regression models to investigate the effects of PM10 on BP. Using the TaqMan® Low-Density Array, we experimentally evaluated and technically validated the expression levels of 377 human miRNAs in peripheral blood. We developed a mediated moderation analysis to estimate the proportion of PM10 effects on BP that was mediated by miRNA expression. PM10 exposure 24 and 48h before the recruitment day was associated with increased systolic BP (ß=1.22mmHg, P=0.019; ß=1.24mmHg, P=0.019, respectively) and diastolic BP (ß=0.67mmHg, P=0.044; ß=0.91mmHg, P=0.007, respectively). We identified nine miRNAs associated with PM10 levels 48h after exposure. A conditional indirect effect (CIE=-0.1431) of PM10 on diastolic BP, which was mediated by microRNA-101, was found in individuals with lower values of mean body mass index. CONCLUSIONS: Our data provide evidence that miRNAs are a molecular mechanism underlying the BP-related effects of air pollution exposure, and indicate miR-101 as epigenetic mechanism to be further investigated.


Assuntos
Poluentes Atmosféricos/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Exposição Ambiental , MicroRNAs/genética , Tamanho da Partícula , Material Particulado/toxicidade , Adulto , Feminino , Humanos , Itália , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Obesidade/etiologia , Sobrepeso/etiologia
18.
Environ Pollut ; 209: 87-98, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26647171

RESUMO

BACKGROUND: Exposure to particulate matter (PM) is associated with various health effects. Physico-chemical properties influence the toxicological impact of PM, nonetheless the mechanisms underlying PM-induced effects are not completely understood. OBJECTIVES: Human bronchial epithelial cells were used to analyse the pathways activated after exposure to summer and winter urban PM and to identify possible markers of exposure. METHODS: BEAS-2B cells were exposed for 24 h to 10 µg/cm(2) of winter PM2.5 (wPM) and summer PM10 (sPM) sampled in Milan. A microarray technology was used to profile the cells gene expression. Genes and microRNAs were analyzed by bioinformatics technique to identify pathways involved in cellular responses. Selected genes and pathways were validated at protein level (western blot, membrane protein arrays and ELISA). RESULTS: The molecular networks activated by the two PM evidenced a correlation among oxidative stress, inflammation and DNA damage responses. sPM induced the release of pro-inflammatory mediators, although miR-146a and genes related to inflammation resulted up-regulated by both PM. Moreover both PM affected a set of genes, proteins and miRNAs related to antioxidant responses, cancer development, extracellular matrix remodeling and cytoskeleton organization, while miR-29c, implicated in epigenetic modification, resulted up-regulated only by wPM. sPM effects may be related to biological and inorganic components, while wPM apparently related to the high content of organic compounds. CONCLUSIONS: These results may be helpful for the individuation of biomarkers for PM exposure, linked to the specific PM physico-chemical properties.


Assuntos
Poluentes Atmosféricos/toxicidade , Células Epiteliais/efeitos dos fármacos , Material Particulado/toxicidade , Proteínas/genética , Transcriptoma/efeitos dos fármacos , Poluentes Atmosféricos/análise , Linhagem Celular , Células Epiteliais/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Estresse Oxidativo , Material Particulado/análise , Proteínas/metabolismo , Estações do Ano
19.
Oncotarget ; 6(19): 17543-58, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26046463

RESUMO

Primary plasma cell leukemia (pPCL) is a rare and aggressive form of plasma cell dyscrasia and may represent a valid model for high-risk multiple myeloma (MM). To provide novel information concerning the mutational profile of this disease, we performed the whole-exome sequencing of a prospective series of 12 pPCL cases included in a Phase II multicenter clinical trial and previously characterized at clinical and molecular levels. We identified 1, 928 coding somatic non-silent variants on 1, 643 genes, with a mean of 166 variants per sample, and only few variants and genes recurrent in two or more samples. An excess of C > T transitions and the presence of two main mutational signatures (related to APOBEC over-activity and aging) occurring in different translocation groups were observed. We identified 14 candidate cancer driver genes, mainly involved in cell-matrix adhesion, cell cycle, genome stability, RNA metabolism and protein folding. Furthermore, integration of mutation data with copy number alteration profiles evidenced biallelically disrupted genes with potential tumor suppressor functions. Globally, cadherin/Wnt signaling, extracellular matrix and cell cycle checkpoint resulted the most affected functional pathways. Sequencing results were finally combined with gene expression data to better elucidate the biological relevance of mutated genes. This study represents the first whole-exome sequencing screen of pPCL and evidenced a remarkable genetic heterogeneity of mutational patterns. This may provide a contribution to the comprehension of the pathogenetic mechanisms associated with this aggressive form of PC dyscrasia and potentially with high-risk MM.


Assuntos
Análise Mutacional de DNA/métodos , Exoma , Leucemia Plasmocitária/genética , Análise por Conglomerados , Humanos
20.
PLoS One ; 9(10): e109685, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25296036

RESUMO

Oxidative stress, pulmonary and systemic inflammation, endothelial cell dysfunction, atherosclerosis and cardiac autonomic dysfunction have been linked to urban particulate matter exposure. The chemical composition of airborne pollutants in Milano is similar to those of other European cities though with a higher PM2.5 fraction. Milano winter fine particles (PM2.5win) are characterized by the presence of nitrate, organic carbon fraction, with high amount of polycyclic aromatic hydrocarbons and elements such as Pb, Al, Zn, V, Fe, Cr and others, with a negligible endotoxin presence. In BALB/c mice, we examined, at biochemical and transcriptomic levels, the adverse effects of repeated Milano PM2.5win exposure in lung and heart. We found that ET-1, Hsp70, Cyp1A1, Cyp1B1 and Hsp-70, HO-1, MPO respectively increased within lung and heart of PM2.5win-treated mice. The PM2.5win exposure had a strong impact on global gene expression of heart tissue (181 up-regulated and 178 down-regulated genes) but a lesser impact on lung tissue (14 up-regulated genes and 43 down-regulated genes). Focusing on modulated genes, in lung we found two- to three-fold changes of those genes related to polycyclic aromatic hydrocarbons exposure and calcium signalling. Within heart the most striking aspect is the twofold to threefold increase in collagen and laminin related genes as well as in genes involved in calcium signaling. The current study extends our previous findings, showing that repeated instillations of PM2.5win trigger systemic adverse effects. PM2.5win thus likely poses an acute threat primarily to susceptible people, such as the elderly and those with unrecognized coronary artery or structural heart disease. The study of genomic responses will improve understanding of disease mechanisms and enable future clinical testing of interventions against the toxic effects of air pollutant.


Assuntos
Poluentes Atmosféricos/toxicidade , Saúde , Coração/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Estações do Ano , Transcriptoma/efeitos dos fármacos , Poluentes Atmosféricos/química , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Ontologia Genética , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho da Partícula , Material Particulado/química , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...